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ABSTRACT

Increasing use of curved sandwich panels as aerospace structure components makes it vital to fully

understand their thermostructural behavior and identify key factors affecting the open-mode debonding

failure. Open-mode debonding analysis is performed on a family of curved honeycomb-core sandwich

panels with different radii of curvature. The curved sandwich panels are either simply supported or

clamped, and are subjected to uniform heating on the convex side and uniform cryogenic cooling on the

concave side. The finite-element method was used to study the effects of panel curvature and boundary

condition on the open-mode stress (radial tensile stress) and displacement fields in the curved sandwich

panels. The critical stress point, where potential debonding failure could initiate, was found to be at the

midspan (or outer span) of the inner bonding interface between the sandwich core and face sheet on the

concave side, depending on the boundary condition and panel curvature. Open-mode stress increases with

increasing panel curvature, reaching a maximum value at certain high curvature, and then decreases

slightly as the panel curvature continues to increase and approach that of quarter circle. Changing the

boundary condition from simply supported to clamped reduces the magnitudes of open-mode stresses and

the associated sandwich core depth stretching.

NOMENCLATURE

n c

Aw

E

Ell, E22, E33

E22

E41

E43

G

G12, G23, G31

h

JLOC

1

F

SPAR

TPS

TI

Tu

t s

12

121, 122, 123

cross-sectional area of honeycomb cell (normal to honeycomb cell generatrix), in 2

cross-sectional area of honeycomb cell wall (normal to the honeycomb cell

generatrix), in 2

Young's modulus of face-sheet material, lb/in 2

effective moduli of elasticity of honeycomb core, lb/in 2

beam element for which the intrinsic stiffness matrix is given

quadrilateral membrane element

quadrilateral combined membrane and bending element

shear modulus of face-sheet material, lb/in 2

effective shear moduli of honeycomb core, lb/in 2

depth of honeycomb core, in.

joint location (grid point) of finite-element model

half-span curved length along center line of curved sandwich panel, in.

= 57.3 (1/0), radius of curved sandwich panel, in.

Structural Performance And Resizing finite-element computer program

thermal protection system

temperature of concave (lower) surface of curved sandwich panel, °F

temperature of convex (upper) surface of curved sandwich panel, °F

thickness of face sheets, in.

coefficients of thermal expansion of face sheets, in/in-°F

coefficients of thermal expansion of honeycomb core, in/in-°F



o

Ah

( Ah ),,ax

0

V

P

Phc

Or

I

0 o
H

0 o

(%)eff

((_r)ma x

Subscripts

1,2,3

radial displacement of middle surface at midspan of curved sandwich panel, in.

change of honeycomb core depth h (positive for stretching), in.

maximum value of Ah, in.

curvature angle (or half-span angle), deg

Poisson' s ratio

weight density of material used for face sheets and honeycomb core, lb/in 3

effective weight density of honeycomb core structure, lb]in 3

radial tensile stress (open-mode stress) in honeycomb core cell wall, lb/in 2

tangential stress in concave side (lower) face sheet, lb/in 2

tangential stress in convex side (upper) face sheet, lb/in 2

effective radial tensile stress in honeycomb core, lb/in 2

local maximum value of r_,, in a distribution of r_,, along core depth at a tangential
station, lb/in 2

maximum value of (r_,,),t, lb/in 2

radial, tangential, and axial (longitudinal) directions

INTRODUCTION

Since the well-known successful aerospace application of sandwich structures in the all-wood-

constructed British Mosquito fighter-bomber aircraft during World War II (refs. 1-4), the use of

sandwich structural technology has become widespread in various aerospace structural applications (e.g.,

wings, tails, wall panels, webs of beams). The typical sandwich structure in panel form is fabricated with

two relatively thin, high-strength face sheets separated by and bonded to opposite sides of relatively

thick, low-density, low-strength core. The resulting sandwich structures are lightweight and have high
flexural stiffness.

In most aerospace applications, the sandwich panels are curved (e.g., fuselage glove of space shuttle

orbiter, certain landing gear doors) or flat with constant core depth or variable core depths to form

aerodynamic shapes (e.g., rotary wing blades, T-38 horizontal stabilizers). When applied to hypersonic

flight vehicles such as space shuttle orbiter structures that are subjected to severe aerodynamic heating,

the sandwich structures are protected with a thermal protection system (TPS) so that the structures can

operate in warm temperatures with low thermal gradient across the sandwich core depth (ref. 5). If the

thermal gradients across the core depth are too severe, the induced thermal moment could become strong

enough to bend the sandwich panel and disturb the original panel shapes. Ko (ref. 6) studied this problem

in great detail.

The most extensively used sandwich structure in aerospace technology is the honeycomb-core

sandwich structure. Because the honeycomb cell generatrix (a line whose motion generates a honeycomb

cell wall) is perpendicular to the face sheets, only line contact ensures proper bonding between the face

sheets and the honeycomb core. Corrosion or excess open-mode deformation (moving apart of two face
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sheetsbecauseof bending)cancausetheline-contactbondingto loseits integrity--a majordrawbackof
thehoneycombsandwichstructure.For titanium alloys,the so-calledsuperplastically-formed/diffusion-
bondingfabricationprocesscouldbeusedto form sandwichpanelswith avarietyof coregeometriesand
achievediffusion-bondedsurfacecontactbetweenthefacesheetsandsandwichcore.

If the sandwichpanelis curved,themechanicalor thermalbendingin thedirectionof reducingthe
panelcurvaturecouldinducetensilestress(calledopen-mode stress) in the sandwich core depth direction

because the two face sheets tend to separate from each other, causing potential debonding between the

face sheets and sandwich core. For the solid curved beams (monolithic or laminated composites)

subjected to open-mode bending, the open-mode stress distribution in the curved beam depth direction is

arch-shaped; that is, zero values occur at the inner and outer boundaries and the maximum value occurs

inward of the middle surface (refs. 7 through 15). The location of the maximum open-mode stress point

moves toward the middle surface as the curved beam depth decreases (refs. 7, 8, 15). For a curved

(horse-shoe-shaped or semi-elliptic-shaped) sandwich beam subjected to open-mode mechanical bending,

however, distribution of the open-mode stress along the core depth direction is almost linear, with the

value reaching a maximum at the inner bonding interface (between the sandwich core and face sheets),

and tapering down slightly toward the outer bonding interface (ref. 16).

If the open-mode bending is too severe, this unfavorable location of the maximum open-mode stress

point in the curve sandwich panel will be the debonding crack nucleation site for inducing the catastrophic

debonding failure of the panels. One of the past catastrophic failures of the curved sandwich panels

occurred in the honeycomb landing gear door panels of a certain rotary-wing aircraft. During the landing

approach when the landing gear doors were wide open, a strong gust of wind induced excess open-mode

bending, and caused a catastrophic debonding failure, resulting in the total loss of one of the landing gear

doors. Recently, the curved sandwich panels have been designed to reinforce the nozzle ramps of certain

nonconventional rocket engines. In such application, the curved sandwich panels will be subjected to

open-mode thermocryogenic bending because the convex side of the curved sandwich panels will be

exposed to higher temperatures, and the concave side to cryogenic temperatures.

Increasing use of curved sandwich panels as aerospace structure components makes it vital to

fully understand their thermostructural behavior and identify key factors affecting the open-mode

debonding failure.

This report concerns the finite-element, open-mode debonding analysis of curved honeycomb-core

sandwich panels subjected to thermocryogenic bending. The results of the analysis show how the open-

mode stress distributions and sandwich panel deformations vary with the panel curvature and boundary

condition. The information in this report could serve as guidelines in the effective design of failure-free

curved sandwich panels that must function under thermocryogenic environment.

DESCRIPTION OF PROBLEM

The following sections describe the geometry of the family of curved sandwich panels, boundary

conditions, and thermocryogenic loading condition used in the analysis.

Geometry

Figure 1 shows a cross-section of the curved honeycomb-core sandwich panel with core depth h,

identical face-sheet thickness t s , half-span curve length 1 (measured along the center line), radius

of curvature r, and the curvature angle (or half-span angle) 0. Panels with different curvatures are
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generatedby simply changing(3andkeepingh, l, and t s constant. Dimension r automatically changes

with 19 according to r = 57.3(//0) because 1 is constant. Table 1 lists the dimensions of the analyzed

sandwich panels.

Table 1. Geometry of curved sandwich panels.

h = 1.4in.

1 = 31in.

ts = 0.032 in.

19 = 90 ° (r = 19.74 in.),

30 ° (r = 59.21 in.),

75 ° (r = 23.68 in.),

15 ° (r = 118.41 in.),

60 ° (r = 29.60 in.),

5 ° (r = 355.23 in.),

45 ° (r = 39.47 in.),

0 ° (r = oo, flat)

The linear dimensions in table 1 (19 excluded) are similar to those of the curved honeycomb-core

sandwich panels proposed for reinforcing the nozzle ramps of certain nonconventional rocket engines for

future space transportation systems. In the range of 15 ° > 19> 0 °, panel deformed shapes for additional

curvature angles 19= 2.5 °, 6.25 °, 7.5 °, 10 °, and 12.5 ° also were examined to find the critical curvature

angle 0 at which the panel deformed modal shape changes.

Boundary Conditions

The edges of the curved sandwich panels are either simply supported (fig. 2(a)) or clamped (fig. 2(b)).

The method of simply supporting a sandwich panel is slightly different from the conventional way of

simply supporting a solid panel. At the sandwich panel edges (fig. 2(a)), transverse rigid bars are attached

and pin-joined to the sandwich edges, with the bar midpoints pinned to fixed points lying in the middle

surface of the sandwich panel. This method of edge support allows (1) panel edges to rotate freely with

respect to the horizontal axes (i.e., edges of middle surface), (2) panel edge depth to remain straight after

deformation, and (3) maximum transverse shear deformation to take place at the panel edges. For the

clamped boundary condition (fig. 2(b)), the two face sheets and sandwich core at the panel edges

are clamped.

Thermocryogenic Loading

The curved sandwich panel is subjected to thermocryogenic loading. The convex side (upper surface)

of the sandwich panel is uniformly heated to temperature T,, = 280 °F, and the concave side (lower

surface) uniformly cooled to cryogenic temperature T I = -320 °F. This temperature range is typical for

laboratory testing the structural integrity of curved sandwich panels designed to reinforce the nozzle

ramps of certain nonconventional rocket engines. Such thermocryogenic loading certainly induces

open-mode bending, and raises concern about potential open-mode debonding failure of the curved

sandwich panels.

FINITE-ELEMENT ANALYSIS

The following sections describe the finite-element modeling of the curved sandwich panels, and the

material properties used for the face sheets and honeycomb core elements.
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Finite-Element Modeling

The open-mode linear elastic debonding analysis used the Structural Performance And Resizing

(SPAR) finite-element computer code (ref. 17). For simplicity, only a segment of each curved

honeycomb-core sandwich panel was considered. Thus, the problem became two dimensional. Because

of symmetry with respect to the y-axis (fig. 1), only a semi-span of the curved sandwich panel segment

was modeled. Each face sheet was modeled with one layer of isotropic quadrilateral combined membrane

and bending E43 elements, and the sandwich core with eight layers of anisotropic quadrilateral membrane
E41 elements.

To simulate the pinned rigid rod at the panel edge (fig.2(a)), each node at the edge of the semispan

model was pin-connected to the fixed supporting point lying in the middle surface using beam E22

element (for which the intrinsic stiffness matrix is given). The stiffness of the E22 elements was made

very large to simulate the rigid rods. Temperature distribution along the sandwich core depth was

assumed to be linear. Figure 3 shows a semi-span, finite-element model generated for curved sandwich

panel segment with curvature angle 0 = 90 °. Finite-element models for different panel curvatures were

generated from the 0 = 90 ° model by simply changing the curvature angle 0 and the associated radius of

curvature r without disturbing other dimensions. Thus, the total number of joint locations (JLOC) and of

finite elements remained unchanged. Table 2 lists the size of the finite-element model for any curvature

angle 0.

Table 2. Size of finite-element model for any curvature angle 0.

JLOC

E41 elements

E43 elements

E22 elements (simply supported case only)

2211

1600

400

10

Material Properties

The material properties of the face sheets and the honeycomb core used for the finite-element models

are of certain age-hardened steel, and are given, respectively, in tables 3 and 4.

Table 3. Material properties of face sheets (age-hardened steel).

70 OF 280 OF -320 OF

E, lb/in 2 29.1 × 106 28.05 × 106 30.05 × 106

G, lb/in 2 10.4 × 106 10.04 × 106 10.6 × 106

v 0.302 0.31 0.285

o_, in/in-°F 9.17 × 10 6 9.17 × 10 6 9.17 × 10 6*

P, lb/ins 0.287 0.287 0.287

*Actual data not available.
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Table4. Effectivematerialpropertiesof
honeycombcore(age-hardenedsteel).

E 11 = 0. ] x ] 04 lb/in 2

E22 = 0.1 x 103 lb/in 2

E33 = 0.1 x 103 lb/in 2

G12 = 0.75 x 105 lb/in 2

G23 = 0.1 x 10 3 lb]in 2

G31 = 0.4 x 10 5 lb/in 2

(X1 = (X2 = (X3 = 8.1 X 10 6 in/in-°F

Phc = 0.432 x 10 2 lb/in 3

In table 4, the subscripts {1, 2, 3 } denote the radial, tangential, and axial (longitudinal) directions.

Data for the effective Poisson's ratios for the honeycomb core were not available at the time of analysis.

The effective Poisson's ratios for the honeycomb core are usually negligibly small (on the order of 10 3 to

107; ref. 2); therefore, they are assumed to be zero in the analysis.

The finite-element analysis computes the effective radial tensile stress c_eff for the honeycomb core.
This stress is then converted to the actual radial tensile stress c_,, (defined as open-mode stress) induced in

the honeycomb core cell wall according to the following relationship:

Ac P

IJr = (_eff -_w = (_eff Phc
(1)

where A c and A w are, respectively, the cross-sectional areas of the honeycomb cell and cell wall (normal

to the honeycomb cell generatrix); P and Phc are, respectively, the weight densities of the honeycomb
core material and core structure.

RESULTS

This section presents the results of finite-element, open-mode analysis of curved honeycomb-core

sandwich panels subjected to thermocryogenic bending, including panel deformations, core depth

changes, open-mode stresses, and face-sheet stresses.

Panel Deformations

Figures 4 through 11 show the deformed shapes of the curved sandwich panels with different

curvatures supported under different boundary conditions. The undeformed shapes are superimposed on

the deformed shapes to show the relative positions of both. In all plots, the panel displacements are

magnified for the sake of visualization. In the figures, values of radial displacement 6 o at the midspan of

the middle surface of each sandwich panel is indicated. The sign of 6 o is defined as positive for upward

(outward) displacement and negative for downward (inward) displacement. For 0 = 15 ° only (fig. 9(a)), in



addition to the value of midspanradial displacement6o (no longer maximum), the maximum radial

displacements at two outer-span points are shown.

For the simply supported panels with curvature angles varying from 0 = 90 ° to 0 =15 ° (figs. 4(a)

through 9(a)), the midspan regions of the sandwich panels move inwardly (60 = negative), and the outer

span regions bulge out. At 0 = 45 °, 30 °, 15 ° (figs. 7(a) through 9(a)), the panel deforms into shallow

M shapes. For curvature angles 0 = 5 ° and 0 = 0 °, (figs. 10(a), ll(a)), the panel bows upward deforming

into arch shapes without cave-in regions. The causes of M-shaped and arch-shaped deformations will be

discussed later in the section, "Face Sheet Stresses." For the simply supported curved panels, the core

depth stretching Ah (i.e., pulling apart of two face sheets) is maximum at the midspan, and gradually

tapers down in tangential direction, and becomes zero at the panel supported edges because of constraint.

For the clamped panels, the midspan radial 6 o is positive at 0 = 90 ° (fig. 4(b)) and then becomes

negative as the curvature angle decreases (figs. 5(b) through ll(b)). At a curvature angle of 0 = 5 °

(fig. 10(b)), the midspan region appears cave-in because of the magnified displacement plot. When the

panel is flat, 0 = 0 °, (fig. 1 l(b)), the midspan downward displacement becomes infinitesimal. For the

clamped curved panels (figs. 4(b) through 10(b)), the core depth stretching appears almost uniform over

the entire span (except for the supported panel edges). As will be shown shortly, the core depth stretching

Ah becomes maximum at the midspan or at the outer spans depending on the value of curvature angle 0.

Figure 12 shows radial displacements 6 o at the midspan of the middle surface of the curved sandwich

panel plotted as functions of curvature angle 0 for the two different boundary conditions. The simply

supported case induced markedly larger magnitude of midspan displacements 6 o (a maximum of 1,357

times larger at 0 = 0 °) than the clamped case. For the simply supported case, the downward displacement

of the midspan (6 o = negative) is maximum at 0 = 90 °, decreases monotonically with decreasing 0, turns

to upward displacement (60 = positive) at approximately 0 = 14 °, and finally increases steeply as 0

approaches zero (flat panel).

For the clamped case, the midspan displacement 6 o is slightly upward (6 o = positive) at curvature

angle 0 = 90 °, and turns downward (60 = negative) at around 0 = 85 °. The downward displacement

continues to increase with decreasing 0, reaching a peak at about 0 =10 °, and then decreases to a very

small negative value at 0 = 0 °.

Core Depth Changes

Figure 13 shows the maximum sandwich core depth changes (Ah),,a x plotted as functions of the

curvature angle 0 for the two cases of boundary conditions. For the simply supported case, (Ah),,ax is

always at the midspan of the curved sandwich panels (flat panel excluded). For the clamped case,

however, (Ah)max is at the midspan only for the panels with low-curvature angles 45 ° > 0 > 5 °. For the

high-curvature angles 90 ° > 0 > 45 °, the location of (Ah)max shifts to the outer spans (near the edges) of

the panel.

The simply supported boundary condition induces higher values of (Ah),,ax (a maximum of
22 percent higher at 0 = 45 °) than the clamped case. As the curvature angle 0 decreases from 0 = 90 °,

values of (Ah),,ax increase slightly and reach their peak (indicated on the figures with downward arrows)

at 0 = 75 ° for both boundary conditions, and then gradually decrease to very small negative values

(contraction) at 0 = 0 °. When the panel becomes flat (0 = 0°), no curvature effects can induce core

stretching, and the sandwich core contracts slightly, because the cryogenic contraction of the sandwich
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coredepthovercomestheeffectof its thermalexpansion.Table5 lists thenumericalvaluesof (Ah)max
usedin plotting figure 13.

Table5. Maximum sandwichcoredepthchanges(Ah)maxfor differentcurvatureanglesO.

0, deg 90 75 60 45 30 15 5 0

Simply 0.08736 0.08949 0.08838 0.08198 0.06413 0.03497 0.00841 _).00028
( Ah ),,ax , supported

in.
Clamped 0.07203* 0.07383* 0.07267* 0.06629* 0.05320 0.03053 0.01042 _).00028

*Located at outer span; all others are located at midspan.

Figure 14 shows the distribution of the sandwich core depth changes Ah (positive for stretching) for

the simply supported case in the 1-0 space, where 1 is defined in figure 1. The distribution surface of Ah

forms a distorted dome shape, with the apex at the midspan of 0 = 75 ° panel. The peak value of Ah is

indicated with a downward arrow. For any curved sandwich panel, Ah is maximum at the panel midspan

and gradually approaches zero toward the panel edge. The curve for connecting the midspan values of

Ah (= (Ah),,ax) for different 0 is indicated in figure 14. This curve is identical to the (Ah)max curve for

the simply supported case shown in figure 13. At 0 = 0 ° (flat panel), the tangential distribution of Ah

becomes flat with slightly negative values (contraction) over the entire span except for panel edges

reflecting the overbalanced cooling of sandwich core as explained earlier.

Figure 15 shows the distribution of sandwich core depth changes Ah in the 1-0 space for the clamped

case. The distribution surface of Ah for the clamped case is cascade shaped with the apex (peak value of

Ah = (Ah),,ax) at the outer span of 0 = 75 ° panel as indicated with a downward arrow. For high-curvature

angles 90 ° > 0 > 45 °, the value of Ah tapers up slightly (almost linearly) from its midspan minimum value

toward the outer span, reaching its peak before suddenly dropping to zero at the panel edges. For

low-curvature angles 45 ° > 0 > 5 °, Ah is maximum at the midspan and decreases infinitesimally and

practically linearly toward the outer span and then drops suddenly to zero at the panel edges because of

edge constraints. The (Ah),,ax curve shown in figure 13 for the clamped case is actually a composite

curve consisting of a segment of the curve at the outer span (curve with arrow sign attached) over the

curvature angle range 90 ° > 0 > 45 ° where Ah = (Ah)max, and a segment of the curve at the midspan over

the range 45 ° > 0 > 5 ° where Ah = (Ah)max (fig. 15). When the panel is flat (0 = 0°), Ah becomes slightly

negative (contraction) and is practically constant over the entire panel span (except for the panel edges)

because of overbalanced cooling as mentioned earlier.

Open-Mode Stresses

Figures 16 through 21 show the tangential distributions of local maximum open-mode stresses (c_,.)a

induced in the curved sandwich panels with different curvature angles 0. As will be seen later, (c_,.)a is at

the inner bonding interface between the inner face sheet and the sandwich core.



For the simply supported case, the maximum open-mode stress (C_,.)d = (C_,.),na x is always at the

midspan of the curved sandwich panel. The values of (c_,.) d decrease monotonically (convex downward)

in the tangential direction from its midspan maximum values (c_,.)max, and down to zero at the panel edges.

For the clamped cases shown in the figures with dashed curves, the tangential distribution of (c_,.)a

remains almost constant over the span up to the panel edges where (c_,.)a drops rapidly to zero because of

clamping. The maximum open-mode stress (c_,.)max is at the midspan of the panel of low-curvature

angle; 45°> 0 > 5% and its location shifts to outer spans of the panel with high curvature angle

90 ° > 0 > 45 °.

Figure 22 shows the plots of maximum open-mode stresses ((Yr)max as functions of the curvature

angle 0 for the two cases of boundary conditions. For the simply supported case, (c_,.)ma x is at the

midspan of the inner bonding interface. For the clamped case (similar to (Ah)ma x in figure 13), however,

(c_,.)max is at the midspan of the inner bonding interface for the curvature range 45 ° > 0 > 5 °, or at the

outer spans of the inner bonding interface for the curvature angle range 90°> 0 > 45 °. The simply

supported case induces higher values of (%)max than the clamped case, with a maximum of 32 percent

higher at 0 = 90 °. The peak values of (c_,.)ma x occur at 0 = 75 ° for both boundary conditions. The shapes

of the (c_,.)max curves and the locations of peak values directly reflect characteristics of the (Ah)max

curves shown in figure 13. Table 6 lists the numerical values of (c_,.)ma x used in plotting figure 22.

Table 6. Maximum open-mode stress (c_,.)max for different curvature angles 0.

0, deg 90 75 60 45 30 15 5 0

Simply 4,434 4,533 4,480 4,134 3,330 1,940 611 0
( c_" )max ' supported

lb/in2 Clamped 3,550* 3,619" 3,544* 3,220* 2,574 1,489 530 0

*Located at outer span; all others are located at midspan.

Figure 23 shows the distribution of the local maximum open-mode stresses (c_,.)a in the 1-0 space for

the simply supported case. The distribution of (c_,.)a, like that of Ah (fig. 14), also forms a distorted dome

shape, with its apex (peak value of (c_,.) d = (c_,.)ma x ) indicated with a downward arrow, at the midspan

of the 0 = 75 ° panel. For any curvature angle 0, the values of (c_,.) d reach their peak (c_,.) d = (c_,.)ma x at

the midspan, and gradually taper down to zero toward the panel edge. The curve for connecting the

midspan values (c_,.)max is indicated in the figure. This curve is identical to the (c_,.)max curve for the

simply supported case shown earlier in figure 22. At 0 = 0 ° (flat), (c_,.) a is zero over the span.

Figure 24 shows the local maximum open-mode stresses (c_,.)a plotted in the 1-0 space for the

clamped case. The surface of (c_,.)a distribution for the clamped case looks similar to a cascade, with its

apex (peak value of (c_,.)a = (c_,.)max) at the outer span of 0 = 75 ° panel (indicated on figure with a down-

ward arrow). For any curvature angle 0, the value of (c_,.)a appears almost constant over the panel span,

and then suddenly drops to zero at the panel edge. When the panel is flat (0 = 0°), (c_,.)a is zero

everywhere. The segment of curve at the outer span (curve with vertical arrow sign attached) over the
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curvatureanglerange90° > 0> 45° where(C_,.)d= (C_,.),,ax and the segment of curve at the midspan over

the range 45 ° > 0 > 5 ° where (c_,.)d = (c_,.),,a x form the composite (c_,.),,a x curve for the clamped case

shown earlier in figure 22.

Figures 25 and 26, respectively, show the radial distributions of open-mode stress c_,. along the y-axis

(i.e., along the midspan core depth direction) for the simply supported and the clamped boundary

conditions. For both types of boundary conditions, the radial distribution of c_,. for any curvature angle

0 (0 _ 0 °) is almost linear, and tapers down very little toward the outer bonding interface. For the flat

panel (0 = 0°), cL. is zero everywhere in the core.

For the simply supported case (fig. 25), % = (%),,ax is at the inner bonding interface (between the

inner face sheet and the sandwich core), and the curve indicated in the figure is identical to the (%),,ax

curve shown earlier in figure 22 for the simply supported case.

For the clamped case (fig. 26), the segment of (%),,ax curve lying in the region 0 < 45 ° is the

midspan (c_,.),,a x curve segment shown earlier in figure 22 for the clamped case.

Face-Sheet Stresses

l 14

Figures 27 through 34 show the tangential distributions of tangential stresses { c_0 , c_0 } induced in the

concave (lower) and convex (upper) face sheets for different curvature angles 0 for the simply supported
14

case. The plus (+) and minus (-) signs alongside the { _10, _0 } curves imply tension and compression,

respectively. The concave face sheet is under tension (c_10 = positive) because of restrained cryogenic

contraction, and the convex face sheet (except for the panel edge regions, figs. 29 through 33) is under
14

compression (c_ 0 = negative) because of restrained thermal expansion. For a given curvature angle 0,
l u

the magnitude of c_0 is always larger than that of c_0 because of panel curvature and the unequal thermo-

cryogenic loading condition. As 0 decreases from 0 = 90 °, the difference between the magnitudes of { c_10,
It

_0 } grows larger (figs. 27 through 33), and then becomes practically zero at 0 = 0 ° (fig. 34). Also, as 0
It .

decreases, c_0 in the convex face sheet near the panel edges begins to grow from negative to positive

(figs. 29 through 33) because of the load transfer from the concave face sheet through the edge rigid rods.

These panel edge tensile zones in the convex face sheet continue to grow larger as 0 becomes smaller, and

finally extend to the entire panel span at 0 = 0 ° (fig. 34).

The tangential stresses of opposite signs induced in the two face sheets (figs. 27 through 33) generate
It

thermal moments [= (_10 - _0 )h/2] that tend to bend the curved panels downward, thus appearing to be

caved in. For a given curvature angle 0, the cave-in thermal moments reach maximum intensity at the

midspan and gradually taper down toward the panel edges. At 0 = 0 ° (flat panel, fig. 34), the cave-in
It

thermal moments diminish because both { c_10, c_0 } have practically identical small positive values that

are constant over the entire panel span.

It

Figure 35 shows the midspan magnitudes of { c_10, c_0 } plotted as functions of curvature angle 0 for
It

the simply supported case. The stress magnitude (c_10- c_0)/2 of the cave-in thermal moments
It

[= (c_10 -C_o)h/2] is also plotted. The value of (c_10 - c_0)/2 increases as 0 decreases from 0 = 90 °,
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reachingamaximumat 0 = 15 ° where the M-shaped deformation is the most pronounced (fig.9(a)), and
14

then decreases rapidly toward zero at 0 = 0% At 0 = 3 °, c_0 changes sign from negative to positive and
1

then reaches a small positive value practically identical to the value of c_0 (fig. 34) as 0 approaches 0 = 0%

Figure 36 shows the causes of the shallow M-shaped deformation of a typical 0 = 15 °, (fig. 9(a))

simply supported curved panel. Because of the cryogenic contraction of the concave face sheet and the

thermal expansion of the convex face sheet, the simply supported panel edges are forced to rotate about

the fixed support points, causing upward bowing of the panel. Simultaneously, the induced cave-in

thermal moments (maximum at the midspan) try to bend the panel downward, resulting in the M-shaped

deformation. At lower curvature angles (e.g., 0 = 5°), the upward bowing effect begins to overshadow the

cave-in bending effect, causing the curved panel to deform into a shallow arch shape (fig. 10(a)). The

transition from M-shaped to arch-shaped deformation occurs in the neighborhood of 0 = 7 ° for the

present study.

/4

Figures 37 through 39 show the tangential distributions of tangential stresses { c_10, c_0 } induced in the

concave and convex face sheets for different curvature angles 0 for the clamped case. The distributions of

{ c_10, c_0 }[or the cave-in thermal moments = (c_10 - c_0)h/2] are almost constant over the panel span for

the larger curvature angles between 0 = 90 ° and 0 = 30 ° (fig. 37), and starts to taper down slightly toward

the panel edges at smaller curvature angles 0 = 15 ° to 0 = 5 ° (figs. 37 and 38). The differences in the

magnitudes of { c_10, c_0 } are almost inconspicuous for 0 = 90 ° to 0 = 30 ° panels, and start to grow larger
/4

with decreasing curvature angle 0. At 0 = 0 ° (fig. 39), the magnitudes of both {c_10, c_0 } are constant

everywhere over the panel span (i.e., constant cave-in thermal moments, fig. 1 l(b)).

/4

Figure 40 shows the midspan magnitudes of { c_10, c_0 } plotted as functions of curvature angle 0 for
14

the clamped case. The stress magnitude (c_10 - c_0 )/2 for the cave-in thermal moment [= (c_10 - c_0 )h/2] is
14

also plotted. The value of (c_10 - c_0 )/2 increases as 0 decreases from 0 = 90 °, reaching a maximum at

0 = 5 ° where the most pronounced cave-in deformation occurs, (fig. 10(b)), and then decreases slightly as

0 approaches 0 = 0%

Figure 41 shows the causes of cave-in deformation of a typical clamped panel (0 = 5°). Because of the

clamped edges without rotations, upward bowing effect is constrained, and the cave-in thermal moments

(almost constant over the entire panel span) bend the panel downward into the cave-in shape.

DISCUSSION

The near-linear radial distribution of c_,, across the core depth is typical for the curved honeycomb-

core sandwich panels, and was observed also in horseshoe- and elliptic-curved honeycomb-core sandwich

bars subjected to open-mode mechanical bending (ref. 15). For a classical solid curved beam on the other

hand, the radial distribution of c_,, at any tangential cross-section is arch shaped, with zero values at the

inner and the outer boundaries, and the local maximum value at a point slightly inward of the middle

surface of the curved beam (refs. 7 through 15).

For the present cases of curved sandwich panels (0 ¢ 0 °) under thermocryogenic loading, the inner

bonding interface at the midspan or at the outer spans is, therefore, the potential debonding failure

initiation region. The deformed shapes of curved sandwich panels presented (figs. 4 through 11) show that

11



themidspanandouterspansof thecurvedsandwichpanelsarethecritical highdeflectionpoints.Thus,in
usingthecurvedsandwichpanelsasreinforcingstructuresoperatingunderthermocryogenicenvironment,
thosecritical high deflectionpoints must be properly constrained(in addition to the paneledges)to
preservethe original shapes.Becausetheclampedboundaryconditioninducessmallerpaneldeflections
andlower levelsof open-modestressfield, by supportingthecurvedpaneledgesascloseasthetheoretical
clampedcondition,concernsof excesspaneldeflectionsandof theopen-modedebondingfailure could
beminimized.

CONCLUSIONS

Finite-element open-mode debonding analysis was performed on a family of curved honeycomb-core

sandwich panels subjected to thermocryogenic bending. The effects of panel curvature and boundary

condition on the open-mode stress distributions and the deformation fields were studied in detail. The key

findings may be summarized in the following:

.

.

.

.

.

.

The peak panel deflection occurs at the midspan of the curved sandwich panel under both simply

supported and clamped boundary conditions (exception: simply supported curved panel with

curvature angle O = 15 °, for which the peak panel deflections occur at outer spans).

The radial distribution of open-mode stress in the core of a curved sandwich panel is practically

linear, with local maximum and minimum values located, respectively, at the inner and outer

bonding interfaces. The minimum value is only slightly lower than the maximum value.

For a simply supported curved sandwich panel, the maximum open-mode stress point (or

maximum core stretching point--the potential debonding failure initiation point) is always at the

midspan of the inner bonding interface.

For the clamped case, the maximum open-mode stress point (or maximum core stretching point)

is at the midspan of the inner bonding interface for low-curvature panels only, and shifts to the

outer spans of the inner bonding interface for high-curvature panels.

The magnitude of the maximum open-mode stress (or maximum sandwich core stretching)

increases with increasing panel curvature, reaching maximum at curvatures angle 0 = 75 °, and

then decreases slightly as the panel turns to a quarter circle (0 = 90 °) under both simply supported

and clamped boundary conditions.

In general, clamping a curved sandwich panel induces smaller panel deflections, lower open-mode

stresses, and less core depth stretching than simply supporting the panel.

Dryden Flight Research Center

National Aeronautics and Space Administration

Edwards, California, February 3, 1999
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/ - measured along
tangential centerline

/ _ _ /

h = 1.4 in. \\,"
/ = 31 in. /_'ts

ts = 0.032 in.

0 =0o~90 ° r

r = 57.3 (I/0) in. \

T/ = -320 °F

Tu = 280 °F
X

990036

Figure l. Curved honeycomb-core sandwich panel subjected to heating and cryogenic cooling on

opposite sides.

Max_mum.

d/,,,,--/RPin joint

igid bar Zero slope
990054 990037

(a) Simply supported. (b) Clamped.

Figure 2. Two types of edge support conditions for the sandwich panel.
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JLOC 2211
E41 elements 1600
E43 elements 400

0 = 90 °

X

990038

Figure 3. Semi-span finite-element model for the curved honeycomb-core sandwich panel; 0 = 90 °.
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Undeformed --_
So = -0.09814 in.

Deformed

(a) Simply supported.

990039

5o = 0.00150 in.

Deformed

(b) Clamped.

Figure 4. Deformed shapes of curved honeycomb-core sandwich panel; T,,
0 = 90 °.

990040

= 280 °F; T l = -320 °F;
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Undeformed q
So = -0.09127 in.

(a) Simply supported.

990041

-'5o = -0.00152 in.

Deformed

(b) Clamped.

Figure 5. Deformed shapes of curved honeycomb-core sandwich panel; T,,
0 = 75 °.

990042

= 280 °F; T l = -320 °F;
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Undeformed-_
_o = -0.08623 in.

L Deformed

(a) Simply supported.

990043

Undeformed
_o = -0.00543 in.

_-- Deformed

(b) Clamped.

Figure 6. Deformed shapes of curved honeycomb-core sandwich panel; T,,
0 = 60 °.

990044

= 280 °F; T l = -320 °F;
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Undeformed-_

_-- Deformed

(a) Simply supported.

990045

= -0.01072 in.

_--Deformed

(b) Clamped.

Figure 7. Deformed shapes of curved honeycomb-core sandwich panel; T,,
O = 45 °.

990046

= 280 °F; T l = -320 °F;

990047

(a) Simply supported.

/'_ _o = -0.01858 in.

990048

(b) Clamped.

Figure 8. Deformed shapes of curved honeycomb-core sandwich panel; T,, = 280 °F; T I = -320 °F;
O = 30 °.
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5o=-0.00788in.
08749 in.

L Undeformed : 990049

(a) Simply supported.

Undeforme_.03212 in.

__ii_iii,iiiii!i!_!i!i,!i!,i:!i!!!i!ii!!!ii:iiii,,H,H,, ii,H:,j,i_i,,,,H,,!_!iiii!!!iii_iii,iii,,iiiiiiiiiiii_iii,i

(b) Clamped.

Figure 9. Deformed shapes of curved honeycomb-core sandwich panel; T,, = 280 °F; T I = -320 °F;
0 = 15 °.

L Undeformed
990051

(a) Simply supported.

" [ .............................................................................................
Deformed ._/

990052

(b) Clamped.

Figure 10. Deformed shapes of curved honeycomb-core sandwich panel; T,, = 280 °F; T I = -320 °F;
0 =5 °.
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i

L Undeformed
990053

(a) Simply supported.

Undeformed-_ .//_ (_o= _0.00136 in.

Deformed J

(b) Clamped.

Figure 11. Deformed shapes of curved honeycomb-core sandwich panel; T,,

0 = 0 ° (flat).

990055

= 280 °F; T l = -320 °F;

_O _

in.

iilf Deformed.

\ F Clamped

0 "_'-a_j,..--a-_"-------'a"------_'a"...... _ ...... "-_-- J._ _ ..A

1 --'* I __ , _ S reply supported

0 10 20 30 40 50 60 70 80 90
0, deg

990056

Figure 12. Plots of radial displacements So (positive upward) at midspan of curved sandwich panel as

functions of curvature angle 0; T,, = 280 °F; T I = -320 °F.
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12 x 10.2

f T u=280°F ./_. or .

s,m0, 
8 T / = -320 °F "'/*

(Ah) max' 61I-f/,. ,-" Midspan I Outer span

in. I Peak value

0 I I I I

-1 0 110 210 310 4_0 50 60 70 80 90
O, deg 99oo37

Figure 13. Plots of honeycomb core maximum depth changes (Ah)max (at midspan or outer span, positive

for stretching) of curved sandwich panel as functions of curvature angle 0; T, = 280 °F; T l =-320 °F.

Ah
(Ah) Tu = 280 ° _I__IL S Deformed

T/ = -320 °F "" ""

8

7 x

6 _ Peak value

Ah, 5

in. 4

3

2

Panel 1
midspan. 90

-1 /= 31 in. 0, deg

Panel edge
990058

Figure 14. Distributions of honeycomb core depth change Ah (positive for stretching) in the 1-e space;

T, = 280 °F; T 1 =-320 °F; simply supported.
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Panel
midspan-

9x10-

8

7

6

Ah, 5

in. 4

3

2

1

-(Ah)ma x curve segment

/= 31 in.

_rnax_CU rve segmentTu = 28_

T/ = -320 °F

__4h/-Deformed

X

90

Peak value

Paneledge
990059

Figure 15. Distributions of honeycomb core depth change Ah (positive for stretching) in the 1-0 space;

T, = 280 °F; T I =-320 °F; clamped.

Tu = 280 °F
T /- Simply

_upported z_-T._-- .agnoF-'_

_, _'_ _ '_,_ ] / / / /' /,,,4"_\. /-Clamped

I _ i i_ \

i

0 1 2 3 4x 103

((_r)d, Ib/in 2
990060

Figure 16. Tangential distributions of local maximum open-mode stress (_,)d in curved honeycomb

core; T, = 280 °F; T I = -320 °F; 0 = 90 °.
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/i

• /-Simply

_d 0 = 75°

" I / / /.//,//,/,.r,_ #,,//-Clamped
. ,'/I///////, ,.,

I I ; / / / ,' / / / ./ i _",,
i/l////////'/X," \

" . _S"" x 103

0 = 75° 4

"_X_ _ 0 ' ((_r)d,

/ Ib/in 2
990061

Figure 17. Tangential distributions of local maximum open-mode stress (%)(1 in curved honeycomb

core; T. = 280 °F; T/= -320 °F; 0 = 75 °.

/

/

i/ \\

supported

)ed

\
\

//_\\

2

1 ((_r)d,

0 ib/in 2

x 103

T u = 280 °F

0 = 60 °

990062

Figure 18. Tangential distributions of local maximum open-mode stress (%)(1

core; T. = 280 °F; T/= -320 °F; 0 = 60 °.

in curved honeycomb
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Simply Tu = 280 °F

_ _ pported
] / ; /_::_2.</--clamped =
I -////,,"/,,,\,,.. _.

-_Z)/;_ x2 (Gr'd,

1 ib/in 2

990063

Figure 19. Tangential distributions of local maximum open-mode stress (a,.)_ in curved honeycomb

core; T, = 280 °F; T I = -320 °F; 0 = 45 °.

___Simply
supported

_-Clamped

i / ////,,%_->,/3
III / il, / ,/' /1" /'_ ///;_2 (Gr)d'

/izZ_l Ib/in2

990064

Tu = 280 °F

0 = 30°

Figure 20. Tangential distributions of local maximum open-mode stress (%)_ in curved honeycomb

core; T, = 280 °F; T I = -320 °F; 0 = 30 °.
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T /- Simply

Clamped supported

Tu = 280 °F

2 ((_r)d, e = 15°
1 Ib/in2

990065

Figure 21. Tangential distributions of local maximum open-mode stress (c_,.)_ in curved honeycomb core;

T, = 280 °F; T I =-320 °F; 0 = 15 °.

6 x 03
- YA

Tu; 8 E::Midsp aYJ m

5- Simply supported] _ - ] T/=_320OF or--._, ."

((Yr)max, 3 - _ Peak value
ib/in 2 //
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/-1

I I I I I I I I I
0 10 20 30 40 50 60 70 80 90

O, deg 990066

Figure 22. Plots of maximum open-mode stress (c_r)ma x (at midspan or outer span) as function of curva-
ture angle O; T, = 280 °F; T I = -320 °F.
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Ib/in2 2

Panel 1

midsp_

O, deg
Panel edge

990067

Tu = 280 °F Yl ""\,

T / = -320_ "/

x

Peak value

_0

Figure 23. Distribution of local maximum open-mode stress (c_,.)a in the 1-0 space; T, = 280 °F;

T/=-320 °F; simply supported.

_((_r)max curve segment ((_r)max curve segment 7

((_r) d2 3

Ib/in 2I __ _2_/ / / /J

Pa ne I 1 [/__/// / _ / /l_'
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_-- Panel edge 990068
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T/= -320 °F "', ./

X

Peak value

Figure 24. Distribution of local maximum open-mode stress (%)(1 in the 1-0 space; T, = 280 °F;

T/=-320 °F; clamped.
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r)maxcurve T u = 280 °Y_,_.r..5 ,
-I-/= -320 °F
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Ib/in2 _ I _ Peak value

Cold
90

Honecomb ----/-__7/2_C/_ 45 --

core "_,_7/_5 15 _v O, deg
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990069

Figure 25. Radial distribution of open-mode stress % along y-axis as a function of curvature angle 0;

T, = 280 °F; T I =-320 °F; simply supported.
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990070

Figure 26. Radial distribution of open-mode stress % along y-axis as a function of curvature angle 0;

T, = 280 °F; T I =-320 °F; clamped.
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Figure 27. Tangential distributions of tangential stresses { (_o, (_1o} in the face sheets; T,

T I =-320 °F; 0 = 90°; simply supported.
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Figure 28. Tangential distributions of tangential stresses { (_o, (_1o} in the face sheets; T,

T I = -320 °F; 0 = 75°; simply supported.

= 280 °F;
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Figure 29. Tangential distributions of tangential stresses { Oo, o10} in the face sheets; T,

T I =-320 °F; 0 = 60°; simply supported.
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Figure 30. Tangential distributions of tangential stresses { Oe, ole } in the face sheets; T,

T I = -320 °F; 0 = 45°; simply supported.

= 280 °F;
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Figure 31. Tangential distributions of tangential stresses {ao, ale} in the face sheets; T,,

T I =-320 °F; 0 = 30°; simply supported.
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Figure 32. Tangential distributions of tangential stresses { ae, ale } in the face sheets; T,,

T I =-320 °F; 0 = 15°; simply supported.

= 280 °F,
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Figure 33. Tangential distributions of tangential stresses { (_o, (_1o} in the face sheets; T,

T I = -320 °F; 0 = 5°; simply supported.
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Figure 34. Tangential distributions of tangential stresses { (_o, (_1o} in the face sheets; T,,

T I = -320 °F; 0 = 0°; simply supported.
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Figure 35. Face sheets tangential stresses { C_o,c_10} at panel midspan as functions of curvature angle t9;

T, = 280 °F; T I =-320 °F; simply supported.
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Figure 36. M-shaped deformation of the simply supported curved sandwich panel caused by the

combined effect of the cave-in thermal moments induced in the panel and the bowing rotations at the

panel edges; T,, = 280 °F; T I =-320 °F; 19= 15 °.
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Figure 37. Tangential distributions of tangential stresses { Oo, Olo} in the face sheets; T,, = 280 °F;

T I =-320 °F; 0 = 90°N15°; clamped.
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Figure 38. Tangential distributions of tangential stresses {Oo, Olo} in the face sheets; T,,

T I = -320 °F; 0 = 5°; clamped.
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Figure 39. Tangential distributions of tangential stresses { o0, o10} in the face sheets; T.

T I = -320 °F; 0 = 0°; clamped.
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Figure 40. Face sheets tangential stresses { o0, o10} at panel midspan as functions of curvature angle O;

T. = 280 °F; T I = -320 °F; clamped.
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Figure 41. Cave-in deformation of the clamped curved sandwich panel caused by the cave-in thermal

moments induced in the panel; T. = 280 °F; T I = -320 °F; 0 = 5 °.
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